Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lesław Sieroń

Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland

Correspondence e-mail: Isieron@p.lodz.pl

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.023$
$w R$ factor $=0.062$
Data-to-parameter ratio $=10.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[aqua(diformato-кO)copper(II)]-μ-1,4-diazabicyclo[2.2.2]octane- $\left.\kappa^{2} N: N^{\prime}\right]$

The title compound, $\left[\mathrm{Cu}\left(\mathrm{CHO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, forms a polymeric chain, $\left[\mathrm{Cu}(\mathrm{HCOO})_{2}(\text { dabco })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\infty}$ (dabco is 1,4diazabicyclo[2.2.2]octane). Both formate ligands are Omonodentate anions and dabco acts as a bridging ligand, creating a linear polymeric arrangement interconnected by $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}_{\text {carboxy }}$ hydrogen bonds. The deformed squarepyramidal $\mathrm{Cu}^{\text {II }}$ coordination comprises two N and two O atoms as the base, and a water molecule in the apical position. The point symmetry of the $\mathrm{Cu}^{\mathrm{II}}$ polyhedron and the dabco ligand is $m m$, and the formate anions lie on the mirror planes $\frac{1}{4}$, y, z and $\frac{3}{4}, y, z$.

Comment

So far, $\mathrm{Cu}^{\mathrm{II}}$-dabco coordination compounds has not been intensively investigated. Only one mononuclear structure (Karan et al., 1999), two dinuclear structures (Durley et al., 1980; Maverick et al., 1986) and one polymeric structure (Rao et al., 1983) of $\mathrm{Cu}^{\mathrm{II}}$ compounds containing the dabco ligand have been reported. The present paper reports the first example of the coordination of the dabco ligand in a basal position of a square-pyramidal $\mathrm{Cu}^{\mathrm{II}}$ polyhedron. The structure of the title complex, (I), is polymeric, with $\left[\mathrm{Cu}(\mathrm{HCOO})_{2}(\text { dabco })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\infty}$ chains running along the a axis. In Fig. 1, the labelled atoms indicate the independent fragment of the chain.

(I)

The chain consists of pentacoordinated $\mathrm{Cu}^{\text {II }}$ ions in a distorted square-pyramidal (SQP) geometry, with two $\mathrm{Cu}-\mathrm{N}$ bonds of 2.093 (2) \AA and two $\mathrm{Cu}-\mathrm{O}$ (formate) bonds of 1.962 (2) \AA in the basal plane. The apical position is occupied by the water molecule $\left[\mathrm{Cu}-\mathrm{OH}_{2}=2.238\right.$ (2) \AA]. The Cu atom is displaced from the basal plane by 0.124 (1) \AA towards atom O1. The point symmetry of the $\mathrm{Cu}^{\mathrm{II}}$ polyhedron and the dabco ligand is $m m$, and the formate anions lie on the mirror planes $\frac{1}{4}$, y, z and $\frac{3}{4}, y, z$.

The observed SQP coordination is distinctly deformed in the direction of trigonal-bipyramidal (TBP) coordination, with

Received 28 July 2003
Accepted 6 August 2003
Online 30 August 2003

Figure 1
A fragment of the polymeric structure of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level.

Figure 2
Perspective view of the crystal packing in the unit cell, showing the linkage of the polymeric chains by hydrogen bonding as dashed lines.
the trigonality parameter $\tau=0.24$ [τ is defined by Addison et al. (1984)]; for the regular SQP structure, the trigonality parameter is 0 and for TBP distortion it increases to 1 .

The formate group acts as a monodentate ligand, the distance between the $\mathrm{Cu}^{\mathrm{II}}$ ion and uncoordinated atom O3 being 3.287 (3) \AA. Such behaviour may be caused by the participation of this atom in a strong hydrogen bond with the water molecule. These interchain interactions, running along the c axis, are shown in Fig. 2. This strong hydrogen bond does not cause a delocalization of the π bond in the carboxyl group as the $\mathrm{C} 2-\mathrm{O} 2$ and $\mathrm{C} 2-\mathrm{O} 3$ bonds are distinctly different [1.257 (3) and 1.214 (4) Å, respectively].

The intrachain $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 6.808 (1) \AA is longer than the shortest interchain $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 6.422 (2) \AA along the c axis. Other short interchain $\mathrm{Cu} \cdots \mathrm{Cu}$ distances of 7.246 (2) and 8.157 (2) \AA are between the two $\mathrm{Cu}^{\mathrm{II}}$ ions related by the 2_{1} screw axis, and with no spacer between them.

Experimental

The title complex was prepared by dissolving cupric formate $\left[\mathrm{Cu}(\mathrm{HCOO})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 2 \mathrm{mmol}\right]$ in 50 ml of water with dabco $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}\right.$, $2 \mathrm{mmol})$. After heating to boiling, a few drops of formic acid were added to clear the solution. The solution was filtered and allowed to cool. After several days, turquoise crystals were obtained.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{CHO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=283.77$
Orthorhombic, Pmmn
$a=6.8084$ (13) £
$b=12.071$ (2) \AA
$c=6.4224(15) \AA$
$V=527.80(19) \AA^{3}$
$Z=2$
$D_{x}=1.786 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens P3 diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.557, T_{\text {max }}=0.661$
719 measured reflections
719 independent reflections
710 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.062$
$S=1.23$
719 reflections
66 parameters
All H -atom parameters refined

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 1$	$2.238(2)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.257(3)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.962(2)$	$\mathrm{O} 3-\mathrm{C} 2$	$1.214(4)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.093(2)$		
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	$98.42(6)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}$	$163.16(11)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$88.90(5)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 1^{\mathrm{i}}$	$177.81(9)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	$90.16(1)$		
Symmetry code: $(\mathrm{i}) \frac{1}{2}-x, \frac{1}{2}-y, z$			

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1}-\mathrm{H} 1 \cdots \mathrm{OB}^{\mathrm{ii}}$	$0.94(4)$	$1.77(4)$	$2.699(3)$	$170(4)$

Symmetry code: (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1+z$.
All H atoms were located from a difference synthesis and refined isotropically. The $\mathrm{C}-\mathrm{H}$ distances range from 0.92 (3) to 1.00 (4) \AA and the $\mathrm{O}-\mathrm{H}$ distance refined to 0.94 (4) \AA.

Data collection: P3 (Siemens, 1993); cell refinement: P3; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in $S H E L X T L / P C$; software used to prepare material for publication: PLATON (Spek, 1990).

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Durley, R. C. E., Hughes, D. L. \& Truter, M. R. (1980). Acta Cryst. B36, 29912997.

Karan, N. K., Sen, S., Saha, M. K., Mitra, S. \& Tiekink, E. R. T. (1999). Z. Kristallogr. New Cryst. Struct. 214, 203-204.
Maverick, A. W., Buckingham, S. C., Yao, Q., Bradbury, J. R. \& Stanley, G. G. (1986). J. Am. Chem. Soc. 108, 7430-7431.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rao, V. M., Sathyanarayana, D. N. \& Manohar, H. (1983). J. Chem. Soc. Dalton Trans. pp. 2167-2173.
Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1993). P3. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

